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ABSTRACT

A technique for finding, with sub-decimeter precision, the
trajectories of Low Earth Orbit (LEO) spacecraft with GPS
receivers on board, has been developed at NASA’s
Goddard Space Flight Center (GSFC). This technique has
been tested, by computing a 24-hour orbit for the
oceanographic satellite JASON-1. With three independent,
precise tracking systems: GPS, DORIS, SLR, and at a
height of 1300 km, this satellite currently has the best-
determined orbits of any LEO. The GPS data has been
post-processed in precise point-positioning mode (with
data from a receiver on board the satellite, and precise
orbits and clock corrections from an external source). The
clock of the receiver has been eliminated by single-
differencing between GPS satellites. The resulting
trajectory agrees to better than 5 cm (3-D RMS) with
“truth”: a very precise orbit calculated independently,
using well-tested space-geodetic techniques implemented
in the GEODYN software used at Goddard SFC.

The method presented here is a form of reduced-dynamic
orbit determination that is easily incorporated into pre-
existing, precise kinematic software, because it relies on
the use of a linearized orbit dynamics theory with a simple
analytical formulation, easily programmed in a computer.
A purely kinematic trajectory for the rover is obtained
simultaneously with the reduced-dynamic orbit. This
method is the product of a study aimed at overcoming the
limitations of the kinematic approach when dealing with
very fast-moving LEOs, by introducing some easily
implemented constraints on the solution. Those limitations
are a consequence of the short observing times available
for estimating the biases in the ionosphere-free carrier-
phase combination.
The technique has been tested with a modified version of
the kinematic “IT” software developed by the first author.
This software already has the option to use the same
method, in long-baseline differential solutions, to estimate
and correct errors in the GPS broadcast ephemerides, to
improve results when these less precise orbits are used.

INTRODUCTION

Precise Point Positioning, LEO Orbit Determination,
and the Kinematic Approach. Precise Point Position
(PPP) is the geolocation of a fixed or moving object, with
data from a single GPS receiver, assisted with precise
information on the orbits and clocks of the GPS satellites.
This contrasts with network-based methods, where the data
of several receivers are combined to find the position of
one or more of them relative to the others. In that case,
precise orbits and clocks are less essential, as they can be
estimated simultaneously with the unknown positions of
the receivers, or (in the case of the clocks) eliminated as
explicit unknowns, by differencing the data (differential
GPS). The main advantage of PPP over the network
approach is that it is much easier, and faster, to handle,
stage and process data from just one receiver, than from
many. (Of course, the orbits and clocks are themselves
estimated using data from some global network of GPS
sites, but the PPP users do not need to do that themselves.)



The main disadvantage, potentially, is the dependence on
outside sources for precise information on GPS orbits and
clocks. This information, nowadays, is readily available on
the Internet by anonymous ftp from the archives of various
organizations, so there is no essential difficulty in getting
it, as long as one intends to post-process the data. Their
quality is easily tested, using them to find the position of a
site with coordinates already known and readily available
data, such as an International GPS Service (IGS) site. To
this date, the experience has been that, for the most part,
those orbits and clocks are of a consistently high quality.

The classical approach to precise orbit determination
(POD) is the dynamic orbit integration method: the main
forces acting on the spacecraft are carefully modeled, and
the rest is estimated from tracking data, in the form of
acceleration parameters (e.g., drag and solar radiation
pressure coefficients). This method is irreplaceable if
tracking data is sparse and poorly distributed along the
orbit. Nowadays, with receivers on low Earth orbiters
(LEOs), several simultaneous GPS observations, collected
every few seconds, can be used alone or combined with
other types of tracking. This has driven the development of
a new and very precise technique, known as reduced-
dynamic [1], [2], where many acceleration parameters are
estimated. These are, typically, the successive amplitudes
of accelerations in the radial, across-track, and along-track
directions that change value every few minutes, in random-
walk fashion. Finally, there is the kinematic approach,
where no dynamics are assumed and the solution depends
purely on the geometric strength derived from observing
several GPS satellites simultaneously. The idea of using it
for LEOs, inspired on the high precision already achieved
for aircraft, ships, cars, etc., has been the object of several
recent studies.

For the most part, the kinematic results reported for LEOs
(e.g., [3], [4]), agree with “truth” to 20-40 cm in 3-D RMS,
and a few cm in 3-D Mean. “Truth” consists of
(presumably) precise orbits obtained by the dynamic, or
the reduced dynamic approach. It must be noted here that
these two studies have been made for the satellite CHAMP.
Because of this LEO’s low altitude, the estimated orbits
used as “truth” may not be all that precise. The a priori
satellite positions, good to a few meters, are obtained using
pseudo-range data only. The a priori constraints on the
position of the satellite are either very loose, or non-
existent. The reason for the lower precision achieved for
LEOs, when compared to terrestrial vehicles, is that those
spacecraft move much faster. As they circle the Earth, the
GPS satellites visible from them rise and set very often,
remaining at useful elevations for only 10 or 20 minutes.
With fewer observations collected during those short arcs,
the biases in the carrier phase Lc (the ionosphere-free
combination of L1 and L2) cannot be estimated well
enough to get a very precise kinematic solution. However,
the authors of another CHAMP study [5] report an

agreement of a few centimeters with “truth”. The study is
characterized by a rare attempt, with a LEO, to resolve
exactly the (double-differenced) carrier phase ambiguities.
A large number of ground stations (more than 100) is used.

At the Space Geodesy Branch of NASA Goddard Space
Flight Center (GSFC), using the orbit determination and
geodetic parameter estimation program GEODYN,
different types of tracking data can be combined to
estimate precisely the orbits of artificial satellites. With the
availability of GPS receivers on board the LEOs of several
space missions, one important activity at the Branch is to
use their data to obtain precise orbit estimates. At present,
the preferred method is to combine, whenever possible,
GPS data (double differenced between the LEO and a
global network of ground receivers), with other types of
tracking data that may be available, such as satellite laser
ranging (SLR), Doppler tracking, etc.

A New Approach. The work reported here is the authors’
first attempt to use PPP for precise orbit determination. It
is also part of a continuing study of kinematic GPS as an
ancillary tool for POD work. Previously, they
experimented with a hybrid differential technique [6]. The
idea was to combine the kinematic and dynamic
approaches, by using them consecutively, in separate
solutions, fitting dynamic orbits to kinematic trajectories.
The LEO trajectories so obtained agreed with “truth” (a
precise orbit) to some 15 cm in 3-D RMS, and to a few
millimeters in the mean. The procedure was tested with the
orbits of JASON-1 and TOPEX.

In the present study, reduce-dynamic and kinematic
techniques are employed simultaneously, in a single
solution. Analytical orbit perturbation theory is used to put
dynamic constraints on the kinematic part of the solution.
Moreover, the LEO’s position can be calculated at epochs
when no adequate GPS observations are available. This is
important, because LEO data tend to have gaps and to be
prone to various glitches. The unknowns solved for are:
carrier-phase biases, instantaneous satellite coordinates, the
orbit initial conditions, and a number of acceleration
parameters. The LEO’s receiver clock is eliminated as an
unknown by single-differencing the GPS data between
satellites. As with other reduced-dynamic procedures, a
dynamically integrated a priori orbit, precise to a few
meters, is used. This makes it easier to detect cycle slips
and other data problems, and allows the use of tighter
constraints on the many acceleration parameters to be
estimated. (The instantaneous coordinates of the LEO are
assigned large a priori uncertainties---100m each). A less
precise form of point positioning, with pseudo-range only,
that needs no preliminary LEO orbit, is used to start the
process from scratch. With simultaneously received signals
from four or more GPS satellites whose positions and
clock errors are known, the LEO’s coordinates and
receiver clock error are obtained by solving a system of



quadratic equations to find the intersection of their space-
time light-cones. A dynamic orbit is fitted to this solution,
to get the a priori orbit.

The JASON-1 Oceanographic Satellite.  Satellite radar
altimetry is a form of remote sensing from space where
highly precise radar altimeters on spacecraft are used,
primarily, to map the irregular shape of the mean sea
surface, and monitor its changes world-wide. This gives
valuable information on currents, on anomalies in the
gravity field that hint at the structure of the Earth's crust
and interior, on changes in sea level associated with
climate change, and on interactions between ocean and
atmosphere.

The interpretation of radar altimeter data requires a very
good knowledge of its position in space. Therefore, precise
orbit determination is a problem of the greatest importance
for altimeter missions. Of those with which the Space
Geodesy Branch at GSFC has been directly involved, the
US-French mission TOPEX/Poseidon was the first one
where a space-qualified dual-frequency GPS receiver was
used, experimentally, as a precise tracking device.

Figure 1. The JASON-1 oceanographic mission. This
figure shows the LEO and also illustrates the mission
concept. The large Earth-pointing radar altimeter dish is at
the bottom. On top and at the front are two GPS antennae.
The microwave radiometer slanted antenna dish is seen in
front section. The radiometer is used to correct the
altimetry for refraction. JASON-1 also carries SLR laser
retro-reflectors and a DORIS Doppler receiver (small
antenna pointing downwards, behind the altimeter’s dish).

This US-French cooperation continues with JASON-1,
shown in Figure 1. This is another oceanographic mission

with a satellite that carries radar altimeters among its
sensors, and, the same as TOPEX, is tracked with GPS on
board, satellite laser ranging (SLR), and the French
Doppler Orbitography and Radiopositioning Integrated by
Satellite (DORIS) system. JASON-1 has been placed on
the same orbit as TOPEX/Poseidon, which is still in
operation. Until recently, one followed the other above the
same ground-track (Figure 2), passing over the same point
on Earth about one minute apart. The near-circular
common orbit has a mean height of 1336 km, to reduce the
effect of air drag, while keeping below the inner van Allen
band, a world-encircling torus of trapped energetic
radiation. The inclination is 66 degrees, providing global
coverage of all main ice-free bodies of water. The ground-
track is repeated almost exactly every 9.9 days. Proximity
to the radiation band, and repeated passes over the South
Atlantic Magnetic Anomaly (a large area of weaker field,
now centered over southern Brazil, where the van Allen
band reaches its lowest altitude), as well as software
glitches, may be causing data gaps and other problems
[15]. It also should be noted that the GPS 1 and 2 antennae
on board are both canted 30o off vertical.

The very high orbit (for a LEO) was originally chosen to
make sure that it could be estimated with the greatest
precision without GPS, which was experimental in
TOPEX/Poseidon, and could be used for POD only until
Anti Spoofing begun, in early 1994. With a modern GPS
receiver on board, and the same orbit as TOPEX, at
present, JASON-1 is the LEO with the best determined
orbits, which are, therefore, ideal for use as “truth” when
testing new positioning techniques.

Figure 2. TOPEX/Poseidon and JASON-1 (nearest one in
this picture), in their present co-orbiting configuration. The
mean height of the surface above the reference ellipsoid is
measured along a swath the width of the radar altimeter
“footprint” (several km), by timing the return time of the
radar pulses, and by precisely determining the orbit of the
spacecraft, to know its height above the ellipsoid.



THEORY

Kinematic and Reduced-Dynamic Methods. Kinematic
GPS is a purely geometric technique: using receiver data
from all simultaneously available GPS satellites to estimate
the differences (dx, dy, dz) between the instantaneous a
priori and actual coordinates of an object. This is done by
forming observation equations linearized about the a priori
positions of the vehicle, then solving them to find dx, dy,
dz by a least-squares fit to the data and, finally, using the
result to correct the a priori positions. In terms of their
dynamics, dx, dy, dz are treated as white noise, or zero-
memory processes. This means that the position estimate at
one epoch is not determined by previous ones, nor does it
determine future ones. The transition matrix is a 3x3 null
matrix. In this study, the a priori uncertainty, or system
noise is 100 m per coordinate (one sigma). On the other
hand, in the reduced-dynamic approach, the corrections dx,
dy, dz to the a priori LEO coordinates, along the whole
orbit, are the solutions of differential equations. These are
derived from the equations of motion for the satellite,
based on Newton’s laws. Although the gravitational force,
air drag, etc., are non-linear functions of position or
velocity, the equations have to be linearized in order to
implement a least-squares estimation procedure, such as a
recursive Kalman filter-smoother. The linearized equations
are known as the variational equations, because their
solutions, to first order, are the changes in the orbit that
would be caused by small variations in the values of the
unknowns. These unknowns are the corrections to the
initial position (dx0, dy0, dz0), velocity (dx0’, dy0’, dz0’);
and also a series of corrections (dax(tk), day(tk), daz(tk),
where t = time) to the accelerations acting on the satellite
in the directions x, y, and z, as calculated when integrating
the a priori orbit. For this study, the initial dynamic
position and velocity components dx0, dx0’, etc., are
assigned a priori uncertainties of 1 m and 10-3 m/s,
respectively, corresponding, roughly, in size, to the errors
in the a priori orbit. The unknown accelerations dax, etc.,
are treated as piece-wise constant random walks that
change at successive epochs tk, (k = 1, 2, 3,.4,...), which
coincide with some of the filter updates. Their system
noise is of the order of 10-8 m/s2. They are assumed to
remain constant over intervals much shorter than the orbit
period. For example, they may be allowed to change every
20 minutes or so for GPS satellites, and every 2 minutes
for LEOs. In this work, the values of the orbit unknowns
are considered to be, in themselves, of little interest. They
are useful for constraining the kinematic solution, and also
for calculating orbit positions at all epochs of interest, even
those with no useful GPS data.

Constraint Equations. The constraints put on the
kinematic solution dx, dy, dz take the form of three
(pseudo) observation equations where all data equal zero:

0+vx = dx - fx (dx0, dy0, dz0, dx0’, dy0’, dz0’, t)
+ fax(dax, day, daz, t) (1a)

0+vy =  dy - fy(dx0, dy0, dz0, dx0’, dy0’, dz0’, t)
+fay(dax, day, daz,t) (1b)

0+vz = dz - fz(dx0, dy0, dz0, dx0’, dy0’, dz0’, t)
+faz(dax, day, daz,t) (1c)

The “noise” terms “v” are purely formal: their variances
cannot be zero, because of the type of Kalman filter used,
and also allow some “slack” between kinematic and
dynamic solutions (they are set here to 1 cm of “noise” per
pseudo-observation). Functions fx, fy, fz represent the
effect of the initial state errors, and fax, fay, faz, that of the
acceleration errors (here and in what follows, the “tk” are
omitted, for convenience). The former terms are the
homogeneous solution, and the latter are the forced
solution, of the variational equations. Their sum is the
complete solution. Because the constraint equations (1a-c)
force the looser kinematic and stiffer dynamic solutions to
agree at certain epochs (although not exactly), all
unknowns in the real observation equations, the Lc biases
and the kinematic dx, dy, dz, are made to converge faster.

Analytical Orbit Dynamics. For orbits that depart only
slightly from a circle, the variational equations have a
simple form in a special reference frame. In this frame, the
x axis is perpendicular to the orbit plane, the z axis is on
the line from the Earth’s center to the satellite’s, pointing
away from Earth. The y axis, approximately aligned with
the velocity vector, is perpendicular to the other two, and
oriented so as to complete a right-handed triad. The origin
is at the Earth’s center of mass, and the frame rotates, to
keep pointing to the satellite’s center of mass. The axes x,
y, z are also called, respectively, across-track, or out of
plane, along-track, or traverse, and radial axes. The
variational equations in this frame are:

dx” = dax - no
2 dx (2a)

dy” = day - 2no dy’ (2b)

dz” = daz + 3no
2 dz + 2no dy’ (2c)

Where “no” is the orbit angular frequency (~10-3 radian/s).
These expressions, known as Hill’s equations, have simple
analytical solutions, easily programmed in a computer, that
are very useful both for understanding the behavior of
satellite orbits, and for estimating orbit errors [7], [8].

The solutions of interest are:

fx = dx0 [cos not] + dx0’ [sin not/no]    (3a)
fy = dy0 + dy0’ [4/no sin not – 3t] + dz0 [6 (sin not –  not)]

 + dz0’ [2/no (cos not – 1)]    (3b)
fz = dz0 [-3 cos not + 4] + dz0’ [1/no sin not]

 + dy0’ [2/no (1 – cos not)]    (3c)



And, for dax, day, daz, constant between epochs tk and t,
with tg = t-tk:

fax = dax [1/no
2 (1 – cos no (tg)] (4a)

fay = day [4/no
2 (1 - cos notg) – 3/2 tg

2]
 + daz [2/no

2 (sin notg – notg)] (4b)
faz = daz [1/no

2 (1 – cos notg)]
 + day [2/no

2 (notg – sin notg)] (4c)

Kinematic solutions are usually made in Earth-fixed
coordinates, so the constraint equations (1a-c) have to be
transformed using the instantaneous rotation matrix
between the frame of (2a-c) and the Earth-fixed frame.

Filter Updates. The expressions for fx, fy, fz, together with
their time derivatives, are all that is needed to form the
partition of the state transition matrix corresponding to the
states of the satellite. The elements of this matrix are the
square brackets (and their derivatives) in (3a-c), arranged
in six columns and rows, one for each state. In what is
known as the pseudo-epoch state approach [9], the initial
state variables are actually allowed to change with time, so
that, at the epoch of any filter update, the homogeneous
solution of the equations (the 6-vector with components fx,
fy, fz,and fx’, fy’, fz’) always equals the complete solution
(including the effect of all accelerations dax(tk), day, daz).
This simplifies considerably the filter update, because (by
choosing all other states to be constants, random walks, or
white noise), the overall state transition matrix is a
diagonal matrix with only zeros and ones on the main
diagonal. The stochastic update at t = tk+1 of the pseudo-
epoch state consists of adding a 6x6 system noise sub-
matrix Q to the 6x6 partition of the filter covariance matrix
corresponding to the pseudo-epoch states of a given
satellite. Each such sub-matrix is given by the expression:

Q = Φ(tk+1  - t0)
-1 F qa {F Φ(tk+1 - t0)

-1}T  (5)

Where: Φ is the 6x6 satellite state transition sub-matrix
from the initial epoch t0 to tk+1, so its inverse represents the
backward transition from tk+1 to t0; “AT” means “the
transpose of A”; F is a 6x3 matrix whose elements are the
time integrals, in the interval tk to tk+1 , of the square
brackets in the expressions (4a-c) of fax, fay, faz; qa is the
diagonal covariance matrix of the unknown dax, day, daz. a
priori values (the system noise).

Further Considerations. When adjusting the GPS orbits,
(possible in network mode, with more than one receiver),
the same theory can be used to estimate errors in the orbits
of the GPS satellites. The orbit pseudo-epoch state
components then appear as unknowns in the observation
equations for the carrier-phase and pseudo-range double
differences.

To obtain the satellite position at any epoch t, the smoother
estimate nearest to t is used to calculate fx(t), fy(t), fx(t),

and these are then added to the x, y, z of the a priori,
dynamically determined orbit. It does not matter if there
are no GPS data available at that epoch. For the LEO
solutions reported here, the best results have been obtained
by zeroing out the coefficient for dy0 in equation (3b), and
all the coefficients in equation (4b). This effectively fixes
dy0 and day to zero (since all the unknowns have zero a
priori values).

TESTING THE TECHNIQUE

Outline of the Procedure.  These are the main steps:
(a) Employing precise GPS clock corrections and orbits
(used also in (c) and (d)), a preliminary determination of
the position and clock error of the LEO is made, using only
the pseudo-range data from its GPS receiver. This means
solving, at each epoch, a set of n quadratic equations (one
for each simultaneous pseudo-range measurement) with
four unknowns, to find the intersection of n 4-dimensional
light-cones with their vertices at each of the n GPS
satellites in view. In this way, the orbit determination can
be started without previous knowledge of the LEO’s orbit.
(b) A preliminary orbit is dynamically fitted to the pseudo-
range solution.
(c) The preliminary dynamic orbit from (b) is used to help
find and correct cycle slips in the carrier phase data single-
differenced between GPS satellites. Movement along the
orbit is smooth, so sudden jumps in the ionosphere-free
combination may reveal cycle slips.
(d) A combined kinematic and reduced-dynamic solution
is made using the carrier phase corrected for cycle slips in
(e), with the orbit from (b) as a priori trajectory.
(e) The results from the reduced-dynamic part of the
solution (satellite states and acceleration parameters) are
used to calculate corrections to the a priori orbit. The
corrected orbit is then checked by:
(1) Comparing it to a very precise orbit estimate (POE),
based on JASON-1’s GPS and SLR tracking.
(2) Computing distances from the corrected orbit to some
laser-ranging sites, and comparing these distances to
corresponding laser ranges.

The Initial Dynamic Orbit.  GEODYN, the main geodesy
and geodynamics analysis software at Goddard Space
Flight Center, was used to fit an orbit to the pseudo-range-
only preliminary solution. The forces acting on the satellite
were modeled with a box-wing model for the effect of
solar radiation pressure and drag, and with the JGM3
gravity field model [14]. The unknowns solved for were
the orbit six initial state components, as well as a few
force-related parameters (classical dynamic approach).
Those were: one drag coefficient every four hours
(TOPEX) or eight hours (JASON), and one daily set of
four or five acceleration parameters (along- and across-
track amplitudes of the sine and cosine of the mean
anomaly, and also a small constant acceleration across
track in the JASON solutions). These unknowns represent



the lumped effect of small forces not modeled, or modeled
incorrectly [7, ibid.] As explained below, a more precise
technique has been used to obtain the “truth” orbit.

The “Truth” Orbit. To verify the quality of the results, a
very precise orbit for JASON-1, recently estimated for a
different project, also with GEODYN, has been used as
“truth”. For nearly a decade, starting with the
TOPEX/Poseidon mission, very precise orbits for altimeter
satellites have been computed at the Space Geodesy
Branch of NASA’s Goddard Space Flight Center.
Considerable efforts have been made to validate the
software and the algorithms, and to study the orbit error
characteristics [10], [2]. A number of procedures have been
used and refined to assess the quality of the results [2].
These include the analysis of orbit overlap differences,
post-fit data residuals, and the fit to SLR and other data
deliberately not used to estimate the orbit. They also
include comparisons with orbits produced by other
institutions, and between data sub-set solutions (e.g. orbits
determined only with SLR data, compared to DORIS-only
solutions), and altimeter crossover residual analyses. Most
recently, highly accurate ephemerides for over a year of
9.9-day repeat cycles of the orbit of JASON-1 have been
computed at GSFC [2, ibid.], with nearly continuous data
available from the on-board dual-frequency BlackJack
GPS receiver [15]. With combined GPS and SLR tracking,
and the reduced-dynamic method, precise orbits have been
calculated in consecutive 30-hour arcs, each overlapping
by 3 hours with both the previous and the following arc.
Tested in the various ways already enumerated, these
orbits have been found to have radial accuracy at the 1 cm
level [2, ibid.]. These solutions have been found to be
consistent (in arc overlaps) at the 4 mm level radially and
13 mm level 3D [2, ibid.]

GPS Software. The results shown here were obtained by
sequential processing with a Kalman filter and a smoother.
The first author’s “IT” GPS software, modified for this
study, already allowed the simultaneous determination of a
variety of unknown parameters, in differential, PPP, static
and kinematic modes [11], [12], [13]. The parameters
include: kinematic corrections to the vehicle a priori
position (treated as three “white noise” states, with a 100 m
a priori one-sigma uncertainty per coordinate); ionosphere-
free combination biases (treated as constants, each with a
10m a priori sigma). Also, although not applicable to
LEOs: errors in the tropospheric corrections made for each
site (estimating the wet zenith delay and two horizontal
gradients); GPS satellite orbit errors; and error in reference
station coordinates. The newly added LEO states were
assigned the uncertainties mentioned in the previous
section. Both the initial and “truth” JASON-1 orbits were
converted into GPS antenna-center trajectories, and vice-
versa, using the satellite center of mass/antenna center
offset, and spacecraft orientation information (available in
quaternion form). The GPS satellite clock corrections and
precise orbits were chosen from the same solution, so their
errors would tend to cancel each other. Corrections were
made for relativistic clock variations with height, and for
transmitter and receiver antenna offsets in the GPS
satellites and in JASON-1. Only the GPS transmitter
antenna phase windup was corrected. No corrections were
made for antenna pattern (or phase center variations)

EXAMPLE

Alternative Notation. In what follows, the rotating dx, dy,
dz defined on the Theory section, will be designated dC,
dL and dR, respectively (for Cross-track, aLong-track, and
Radial), to make clear they are not in an Earth-fixed frame.

Figure 3. Step (c): Differences between a priori dynamic orbit and “truth”.



Figure 4. Differences between the kinematic part of the solution, and “truth”.

Figure 5. Difference between the reduced-dynamic part of the solution, and “truth”.

The Test Solution. The results of a 24-hour solution for
April 8, 2002 are shown in Figures 3-5 above. Figure 3 is a
plot of the differences between the a priori orbit
(dynamically fitted to a preliminary pseudo-range only

solution), and Goddard’s precise orbit estimate (POE),
used as “truth”. The a priori orbit differs from “truth” by as
much as 60 cm in the along-track direction, and as much as
10 and 20 cm in the across-track and radial directions.



Figure 4 shows the differences between the kinematic part
of the solution and “truth”. Because the a priori orbit was
computed at 30-second intervals, the Precise Point-
Positioning solution (both kinematic and reduced-dynamic
parts) was also made at 30-second intervals, although the
JASON-1 receiver provides data every 10 seconds. JPL’s
30-second GPS clock corrections and precise orbits were
obtained from the CDDIS on-line archive at Goddard.

There were several long breaks in the data, and many
epochs with poor geometry (very large PDOP values). This
was due, partly, to few satellites being in view above the
elevation cutoff of 6o chosen by trial and error (a problem
made worse by the antennae in JASON-1 not being
mounted horizontally), and partly to many data being
edited out for bad reception (low signal to noise ratio). In
consequence, the total number of 30-second points in the
computed 24-hour kinematic trajectory was reduced to
1760, from a possible 2880. The differences plotted in the
figure are only those at epochs when the PDOP was less
than 10, which further brings down their number by 240, to
the 1520 epochs shown in the plot.

Figure 5 shows the plot of the differences between the
reduced-dynamic part of the solution and “truth”. The
ringing pattern discernible in the plot is typical of the
difference between two very close orbits, and reveals the
resonant nature of small orbit perturbations, implicit in
equations (2a-c). Each oscillation has the same period as
the satellite orbit, close to two hours. As explained earlier,
this part of the solution was easily interpolated to any
epochs of the a priori orbit, including those with not
enough GPS data to compute points for the kinematic part.
Table 1 lists statistics of the differences between each
solution and the precise orbit, or “truth”. The results for
height (dR) are also listed, because this component is the
most important in altimeter missions such as JASON-1.
Finally, the results of testing the reduced-dynamic part,
with laser ranging data of six International Laser Ranging
Service (ILRS) sites from around the world, are listed in
Table 2. The laser ranges (normal points) were first
corrected for site-dependent biases, then had subtracted the
computed distances between the estimated positions of
JASON-1 and the sites. The RMS of the differences is an
independent measure of the accuracy of the solution.

Discussion. In general, the results listed here show that
both parts of the solution are substantially better than the a
priori orbit. Further work might lead to better choices of a
priori uncertainties for the reduced-dynamic unknowns and
of the degree of coupling between kinematic and reduced-
dynamic trajectories (determined by the level of “noise”
introduced in the constraint equations (1a-c)). It may also
lead to a better understanding of the strengths and
limitations of the new approach. One useful application
could be the use of the trajectories so obtained, to validate
POD work done with more conventional techniques.

TABLE 1
Departure of the Solutions from “Truth”

(Centimeters)

TRAJECTORY
3-D
RSS

dR
(RMS)

dR
MEAN

Number of
Points

A Priori Orbit 23.0 8.8 0.02 2880

Kinematic 7.4 4.9 -0.6 1520

Reduced-
Dynamic 4.7 1.6 -0.05 2880

TABLE 2
Agreement between the Reduced-Dynamic Part of the

Solution and Independent SLR Tracking
(RMS in Centimeters)

ILRS
SITE

RMS
OF FIT

No. of
Points

WETL 2.0 44
RIGL 4.2 70
METL 3.5 22
HERL 2.3 75
MONL 1.3 20
YARL 4.7 9

CONCLUSIONS

The procedure described here has been tested in a 24-hour
solution for the satellite JASON-1, a LEO chosen because
its orbit is probably the best determined, at present. Using
the new method, both kinematic and reduced-dynamic
trajectories have been obtained simultaneously. They differ
from a very precise “truth” orbit by less than 10 cm, 3-D
RMS, with sub-centimeter mean differences. In particular,
the reduced-dynamic part of the solution is within 5 cm (3-
D RMS), and 0.8 mm (3D-mean) of “truth”, while the fit to
independent laser ranging data is about 3 cm RMS.

Applying antenna pattern and phase windup corrections to
the JASON-1 GPS data, could reduced those differences
further. So could some better tuning of the values of the
priori uncertainties assigned to the reduced-dynamic
unknowns, and to the constraint equations (1a-c). More
tests, using GPS data from other satellites, should help
clarify and develop these ideas further.

The results, so far, show that with the proposed procedure
one can obtain precise trajectories for LEOs such as
JASON-1, probably good enough to be used, among other
things, in new types of validation tests for orbits estimated
with other POD procedures.



With the approach described here, relatively small
modifications are needed to add precise orbit determination
capabilities to some pre-existing kinematic software.

Because of the simplicity of handling data from a single
receiver, and the faster turnaround time that this makes
possible, Precise Point Positioning, however implemented,
seems destined to have many practical space applications.
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